Number Patterns and Sequences-Answers

Key Stage 3: 2003 Paper 1 Level 3-5

1.

Tie	r & C	Ques	tion			Chains
3-5	4-6	5-7	6-8			Chairis
7	1				Correct response	Additional guidance
a	a			1m	Gives both correct values correctly positioned, ie 20 and 320	
ь	ь			1m	Gives both correct values correctly positioned, ie 5 and $2\frac{1}{2}$ or equivalent	\checkmark For $2\frac{1}{2}$, $\frac{5}{2}$

Key Stage 3: 2003 Paper 1 Level 4-6

2.

Tie	4 (Que	tion)		Chains
1-5	4-6	5-7	6-8			Citaliis
	1				Correct response	Additional guidance
a	а			1m	Gives both correct values correctly positioned, ie 20 and 320	
ь	ь			1m	Gives both correct values correctly positioned, ie 5 and $2\frac{1}{2}$ or equivalent	✓ For $2\frac{1}{2}$, $\frac{5}{2}$

Key Stage 3: 2005 Paper 2 Level 3-5

Tie	180	Ques	tion			Shapes on a grid
-5	4-6	5-7	6-8			Shapes on a grid
0	3				Correct response	Additional guidance
3	a			1m	20	
,	ь			1m	60	! Follow through Accept follow through as their (a) × 3, provided their (a) was not 5
c	c			1m	4	! Operation repeated eg • × 4 Condone * More than one number given eg • 2 × 2

Key Stage 3: 2005 Paper 2 Level 4-6

4.

Tier	r & (Ques	tion			Change on a guid
-5	4-6	5-7	6-8	-		Shapes on a grid
0	3				Correct response	Additional guidance
1	a			1m	20	
5	ь			1m	60	! Follow through Accept follow through as their (a) × 3, provided their (a) was not 5
	c			1m	4	! Operation repeated eg • × 4 Condone * More than one number given eg • 2 × 2

Key Stage 3: 2006 Paper 1 Level 3-5

ier & Que			Step sizes
5 4-6 5	7 6-8		3(ep 3)2e3
2		Correct response	Additional guidance
a	11	Shows a correct way, other than add 8 then add 12, using exactly two steps eg add 15 add 5 add 15 20 +23	 ✓ Add 12 then add 8 ✓ Fractions, decimals or negatives ! Operations omitted Condone, provided the directions of any arrows, if shown, are correct eg, accept
•	1:	n 5	! Answer shown only on the diagram eg * 5 0 Accept provided there is no ambiguity
	1e	n 6	
	1e	$2\frac{1}{2}$ or equivalent	

Tier & C	Question			
3-5 4-6	5-7 6-8			Hexagon patterns
19 13	7		Correct response	Additional guidance
		2m	61	★ For 2m or 1m, incorrect notation eg, for 2m
		or 1m	Shows the value 21 or 40, with no evidence of an incorrect method or a method using counting on for the value or	
			Shows a correct method for both types of tile with not more than one computational error eg 20 + 1, 20 × 2 20 × 3 + 1 or	➤ For 1m, method shown uses counting on
			Shows a correct expression for the total number of hexagons, in which the terms in <i>n</i> have been collected together eg • 3 <i>n</i> + 1 • <i>n</i> × 3 + 1	

Key Stage 3: 2006 Paper 2 Level 3-5

_	_	estion	4		Using rules
-	-	5-7 6-8	-	74(4-200 Nasana - 1125)	
9	2	4	Ш	Correct response	Additional guidance
1	а		1m	20, 28	
l			1m	36, 108	
			1m	14, $14\frac{1}{2}$ or equivalent	! First new term for each sequence correct, with second terms all incorrect or omitted Mark as 0, 0, 1
	ь	T	1m	Indicates No and gives a correct explanation The most common correct explanations:	
				Show that the rule does not work for the third term eg It doesn't work for the second two numbers, 22 - 8 = 14 not 18 If it was subtract 8, the last number would be 14 It's 22 - 4 = 18, not 22 - 8 22 - 18 = 4 not 8	✓ Minimally acceptable explanation eg • 22 - 8 = 14 • When you take away 8, it should be 14 • 18 should be 14 • The third number should be 14 • 22 - 8 ≠ 18 • It's 22 - 4 • 18 to 22 is 4
					 ★ Incomplete or incorrect explanation eg • 18 is wrong • It should be 14 • It doesn't work for 22 and 18 • You subtract a different number the second time • 8 - 22 = 14 • 22 - 8 = 15
				State what the correct rule could be eg It should be divide by 2, then add 7 The rule is add 14 then halve it You take away half as much each time	✓ Minimally acceptable explanation eg • + 2 + 7 • It's take away 8, then take away 4 • -8 and -4 • You halve what you subtract
			(UI)		 ➤ Incomplete or incorrect explanation eg You subtract a different number each time You subtract 4 The rule is subtract 4 Take away half

lier & Question	1		Havenen watterns
-5 4-6 5-7 6-	В		Hexagon patterns
19 13 7		Correct response	Additional guidance
	2m	61	★ For 2m or 1m, incorrect notation eg, for 2m • 61n
	or 1m	Shows the value 21 or 40, with no evidence of an incorrect method or a method using counting on for the value	
		Shows a correct method for both types of tile with not more than one computational error eg 20 + 1, 20 × 2 20 × 3 + 1	x For 1m, method shown uses counting on ■ The shown t
		Shows a correct expression for the total number of hexagons, in which the terms in n have been collected together eg $n = 3n + 1$ $n \times 3 + 1$	

Key Stage 3: 2006 Paper 2 Level 4-6

lier & Qu				Using rules		
-5 4-6 5	5-7 6-8					
9 2	Ш		Correct response	Additional guidance		
ı a		1m	20, 28			
		1m	36, 108			
		1m	14, $14\frac{1}{2}$ or equivalent	! First new term for each sequence correct, with second terms all incorrect or omitted Mark as 0, 0, 1		
ь		1m	Indicates No and gives a correct explanation The most common correct explanations:			
			Show that the rule does not work for the third term eg It doesn't work for the second two numbers, 22 - 8 = 14 not 18 If it was subtract 8, the last number would be 14 It's 22 - 4 = 18, not 22 - 8 22 - 18 = 4 not 8	✓ Minimally acceptable explanation eg • 22 - 8 = 14 • When you take away 8, it should be 14 • 18 should be 14 • The third number should be 14 • 22 - 8 ≠ 18 • It's 22 - 4 • 18 to 22 is 4		
				 Incomplete or incorrect explanation eg 18 is wrong It should be 14 It doesn't work for 22 and 18 You subtract a different number the second time 8 - 22 = 14 22 - 8 = 15 		
			State what the correct rule could be eg It should be divide by 2, then add 7 The rule is add 14 then halve it You take away half as much each time	✓ Minimally acceptable explanation cg • + 2 + 7 • It's take away 8, then take away 4 • -8 and -4 • You halve what you subtract		
		UI		Incomplete or incorrect explanation eg You subtract a different number each time You subtract 4 The rule is subtract 4 Take away half		

ier & C)ues	tion			
-5 4-6	5-7	6-8			nth term
19	11	4	, ,	Correct response	Additional guidance
а	a	a	1m	Gives a correct expression eg 4n + 2 4n + 1 + 1	! Unsimplified expression or unconventional notation eg, for part (a) • 4 × n + 2 • n4 + 2 Condone
ь	Ь	ь	1m	Gives a correct expression eg • $3n + 3$ • $3(n + 1)$ • $\frac{1}{2}(6n + 6)$ • $(6n + 6) + 2$ • $\frac{6n}{2} + \frac{6}{2}$	* Necessary brackets omitted eg, for part (b) • 6n + 6 + 2 eg, for part (c) • 2 × 5n - 3
c	c	c	1m	Gives a correct expression eg • $10n - 6$ • $2(5n - 3)$ • $(5n - 3) \times 2$	

Key Stage 3: 2007 Paper 1 Level 3-5

Tier & Q	uestion 5-7 6-8		Number line
2	5-7 0-0	Correct response	Additional guidance
	2m	Gives all three correct values in the correct positions, ie $ \begin{array}{c c} 1 \\ $	
	or 1m	Gives at least two correct values in the correct positions	! For 1m, follow through Accept as their previous incorrect value - 3, provided their previous incorrect value < 3 eg, for 1m accept 1

Key Stage 3: 2007 Paper 2 Level 3-5

12.

Tier & Question				Rule	
1	4-6 5-	7 6-8		Correct response	Additional guidance
			1m	11, 14	
			1m	23, 47	
			1m	41, 122	! First new term for each sequence correct with second terms all incorrect or omitted Mark as 0, 0, 1

Key Stage 3: 2008 Paper 2 Level 4-6

Tier & Question				Triangular numbers		
3-5	4-6	5-7	6-8			
	28	19	9		Correct response	Additional guidance
	a	a	а	1m	55	
	ь	ь	ь	1m	5050	-

Key Stage 3: 2009 Paper 1 Level 3-5

14.

Key Stage 3: 2009 Paper 2 Level 3-5

Key Stage 3: 2009 Paper 1 Level 4-6

Key Stage 3: 2009 Paper 2 Level 4-6

Key Stage 3: 2010 Paper 2 Level 3-5

18.

Key Stage 3: 2010 Paper 1 Level 4-6

	Tier & Question				T		
3-5	4.6	5-7	6-8			Terms	
	21	12	3	Mark	Correct response	Additional guidance	
				2m	Gives the values -40 and -130 in either order		
			1m Shows the value –40 or –130 with the dincorrect or omitted				
				1m	Shows the value -40 or -130 with the other value incorrect or omitted	! For 1m, follow-through from an incorrect value	
					or	Accept provided both values are negative and their difference is 90	
					Shows the value 360		

Key Stage 3: 2010 Paper 2 Level 4-6

20.

Tier 6						Tile patterns
1 1			6-8	Mark	Correct response	Additional guidance
a i	а	a		1m	2n + 2	! Throughout the question, unsimplified expression, or expression with unnecessary addition, subtraction, multiplication or division symbols, or other unconventional notation eg, for part (a) • 2 × n + 2 • n2 + 2 eg, for part (b) • 1n + 1 • (2n + 2) + 2 Condone
o t	Ь	Ь		1m	n + 1	! Follow-through as their (a) ÷ 2 Provided that their (a) is an algebraic expression with two terms

Key Stage 3: 2011 Paper 1 Level 4-6

Tier & Que					Number lines	
4-6 8	5-7	Mark	Correct response	Additional guidance	radiliber lilles	
		1m	Indicates the correct number eg 2 20 Indicates the correct number eg 0.65 0.650 650			